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概要
講演者は，弁護士資格を有する数学科の大学院生として，訴訟における因果関係の判断枠組み
について研究している．実務上用いられている指標は，そのままでは因果関係の成立する確率を
示すものと解釈することはできず，一定の仮定が必要である．本講演では，実務の判断枠組みが
そのような仮定を検討することなく用いられていることを指摘し，実務における判断の暗黙の前
提を明らかにする．その上で，当該仮定が成り立たない一般の場合にも妥当する判断枠組みを提
案する．

1 導入
1.1 研究対象: 訴訟における因果関係の判断枠組み
訴訟において被害者が加害者に損害賠償を請求する場合，被害者は，加害者の行為と被害者の損害
との間に因果関係があることを立証する必要がある．しかし，公害や薬害などの訴訟においては，原
因行為と損害との間の因果関係を直接立証することが困難である．例として，以下の事例をモデル
ケースとして考えてみよう．
事例� �
汚染地域に居住する Aは，B社の操業する工場の排出した汚染物質によって呼吸器疾患を発症
したとして，B社に対し損害賠償請求訴訟を提起した．訴訟において，Aは，B社が排出した
汚染物質と Aの疾患との間の因果関係を立証せねばならない．� �
この事例において，因果関係の有無は「あれなければこれなし」という条件関係の有無によって判
断される*1．すなわち，「Aが汚染物質に曝露していなければ Aの疾患は発症しなかった」という関
係が成り立つか否かが判断基準となる．当然，このような事例において，Aが曝露を受けなかった場
合に疾患を発症しなかったことの立証は極めて困難である．

∗ 本研究は，JSPS 科研費 JP25KJ1896, JP23K01215 およびマス・フォア・イノベーション卓越大学院プログラムの
助成を受けた寺本振透教授との共同研究を再構成したものである．
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*1 正確には，条件関係のある損害すべてに対して賠償が認められるわけではない．また，加害者が複数いる場合，条件関
係はうまく機能しないことが知られている．この事例においては，条件関係の有無のみを考察の対象とする．



そのため，法実務上，統計学的手法に基づく因果関係の立証が歴史的に認められてきた．しかし，
こうした手法によってなぜ因果関係が立証できることになるのかについては，理論的な争いがある．
本稿では，訴訟における因果関係の判断枠組みを数理モデルによって分析し，その暗黙の前提を明ら
かにした上で，当該前提が成り立たない場合にも妥当する一般的な判断枠組みを提案する．

1.2 研究方法: 統計的因果推論
統計的因果推論とは，因果関係を統計的に分析する分野であり，20世紀後半から発展してきた比
較的新しい分野である．統計的因果推論は，因果関係の有無や程度を科学的に明らかにする方法を提
供するものとして，医学や経済学などの分野で広く応用されているばかりか，科学哲学に対しても影
響を与えている．本稿では，主に統計的因果推論研究の第一人者である Judea Pearl の理論に基づ
き，法実務における因果関係の判断枠組みを批判的に検討する．
まず，第 2節で基本的な考え方をインフォーマルに導入した後，第 3節で数理モデルを定義する．
続いて，第 4節では法実務における因果関係の判断枠組みを紹介し，これが因果関係の判断枠組みと
して適切でないことを論証する．さらに，実務上の判断枠組みを正当化するための条件を検討する．
最後に，第 5節で，当該条件が成り立たない場合にも妥当する一般的な判断枠組みを提案する．

2 基本的な考え方
Pearlは，「因果推論のはしご」として，以下の 3つの階層を提唱している [7]．

関連付け 汚染地域に住む人は，住んでいない人に比べ，病気になりやすいだろうか?

介入 汚染地域に住むことによって，病気になりやすくなるだろうか?

反事実 汚染地域に住んでいて病気になった人は，もし汚染地域に住んでいなかったら病気にならな
かっただろうか?

これらの 3種類の推論は，下に記載したものほど必要なデータや仮定が多くなる．以下では，これ
らの推論の違いについて，インフォーマルに説明する．

2.1 関連付け
疫学的調査によって，図 1に示す結果が得られたとする．

曝露あり 曝露なし
疾患あり 500 400

疾患なし 100 200

図 1 得られたデータの例

疾患を発症したのは曝露を受けた人の 5/6，曝露を受けなかった人の 4/6であった．すなわち，こ
のデータからは，曝露を受けた人（汚染地域に住んでいた人）の方が疾患を発症しやすいことが分か
る．これが，関連付けの階層に属する推論である．



2.2 介入
しかしながら，このデータのみからは，汚染地域に住むことによって疾患を発症しやすくなると結
論づけることはできない．例えば，先の例において，調査対象者が喫煙者であるかどうかについての
情報も得られていると仮定し，図 2に示すデータが得られたと考えてみよう．

喫煙者 非喫煙者
曝露あり 曝露なし 曝露あり 曝露なし

疾患あり 500 400 0 0

疾患なし 0 0 100 200

図 2 喫煙者と非喫煙者に分けた場合のデータの例

これは説明用の極端な例だが，喫煙者は全員が疾患を発症し，非喫煙者は全員が疾患を発症しな
かったとする．この場合，疾患を発症するかどうかは喫煙者であるかどうかによって決定されてお
り，汚染地域に住んでいるかどうかは関係がないと推論するのが妥当であろう．あくまで，喫煙者の
方が非喫煙者に比べて汚染地域に住む割合が高かったために，汚染地域に住む人の方が疾患を発症し
やすいというデータ（図 1）が得られたに過ぎない．
このように，2つの要因の双方に影響を与える交絡因子の存在により，因果関係の推論は困難なも
のとなる．先の例では，喫煙が交絡因子であり，喫煙者ほど汚染地域に住みやすく，かつ疾患を発症
しやすいという関係があった．疾患を発症しやすい属性の人が汚染地域に住みやすいがゆえに，汚染
地域に住むことで疾患が発生したかのようなデータが得られたのである．
曝露と疾患の間の因果関係を適切に論じるためには，交絡因子による「曝露の受けやすさ」の偏り
を排除する必要がある．これを介入というが，統計的因果推論は，数学的な操作によって介入を行う
ための理論を提供する．介入によって，「（実際には曝露を受けなかった人々も含めて）仮に母集団
全体が曝露を受けていれば，そのうちの何人が疾患を発症しただろうか」という推論が可能となる．
「母集団全体が曝露を受けた世界」と「母集団全体が曝露を受けなかった世界」を比較し，それぞれ
の世界において疾患を発症したであろう人々の割合を比較することによって曝露と疾患の間の因果関
係を推論するというのが，介入の階層に属する推論である．

2.3 反事実
介入の階層に属する推論は，“母集団全体が”曝露を受けていれば，あるいは受けていなければどう
なっていたであろうかを考えるものであった．これに対して，冒頭の事例の Aが訴訟において立証
しなければならないのは，母集団全体の傾向ではなく，A個人に関する因果関係である．そして，A

に関しては，曝露を受け，かつ疾患を発症したという情報がすでに分かっている．したがって，「仮
に Aが曝露を受けていなかったら，Aは疾患を発症しなかっただろう」という推論を行うためには，
母集団全体ではなく，「曝露あり」かつ「発症あり」という条件を満たす部分集団に着目する必要が
ある．これが，反事実の階層に属する推論である．



3 数理モデル
3.1 構造的因果モデルと介入
前の節では，統計的因果推論の基本的な考え方をインフォーマルに説明した．この節では，数理モ
デルを用いた説明を与える．はじめに，構造的因果モデルを定義する．

定義 1 (構造的因果モデル [5]). U = {U1, . . . , Up}を独立な確率変数の集合とし，この元を外生変
数と呼ぶ．V = {V1, . . . , Vp}を確率変数の集合とし，この元を内生変数と呼ぶ．
各 Vi ∈ V に対して集合 pa(Vi) ⊂ {V1, . . . , Vi−1} が定められているとする．さらに，各 Vi ∈ V

は，f = {f1, . . . , fp}の元である fi によって以下のように定められるとする．

Vi = fi(pa(Vi), Ui)

このとき，3つ組M = ⟨U ,V ,f⟩を，構造的因果モデルと呼ぶ．

構造的因果モデルにおいて，各内生変数 Vi は，それよりも番号の小さい内生変数の集合 pa(Vi)と
外生変数 Ui によって定まる（pa(V1) = ∅なので V1 = U1）．そのため，各 U1, . . . , Up の実現値が与
えられたとき，内生変数の値は再帰的に決定されることに注意する．また，各外生変数 Ui は，未知
でランダムな要因を表すと解釈され，他の外生変数や内生変数によっては決まらない．
構造的因果モデルが与えられると，これから有向非巡回グラフが構成できる．V = {V1, . . . , Vp}
を頂点の集合とし，各頂点 Vi に対し，その親が pa(Vi)となるように有向辺を引く．このグラフを，
構造的因果モデルM に対応する因果ダイアグラムと呼ぶ．
次に，第 2.2小節で紹介した介入を正式に定義する．

定義 2 (介入 [5]). M = ⟨U ,V ,f⟩ を構造的因果モデル，vk を内生変数 Vk ∈ V の実現値とする．
M における Vk についての式

Vk = fk(pa(Vk), Uk)

を，以下の式
Vk = vk

に置き換える．すなわち，fk を定数関数 fVk←vk = vk に置き換える．
このように，構造的因果モデルM から新たな構造的因果モデルMVk←vk = ⟨U ,V ,fVk←vk⟩を構
成する操作を介入と呼ぶ（ただし，fVk←vk = {f1, . . . , fk−1, fVk←vk , fk+1, . . . , fp}）．

元のモデルにおいては，Vk はその親 pa(Vk) と外生変数 Uk によって決定されていたが，介入に
よって Vk は定数 vk に固定される．すなわち，元のモデルにおいて vk という値をとりやすいかどう
かにかかわらず，Vk を vk に固定するということである．そのため，交絡因子の影響を排除した推論
を行うことが可能となる．なお，介入後のモデルにおいては Vk の親は存在しなくなるから，元のモ
デルの因果ダイアグラムから Vk に向かうすべての有向辺を削除したグラフが，介入後のモデルに対
応する因果ダイアグラムとなる．



介入前のモデルM の内生変数 Vi を，介入後のモデルMVk←vk では Vi,Vk=vk と表記する*2．

3.2 事例のモデリング
冒頭の事例を，構造的因果モデルと介入を用いて分析しよう．X,Y をそれぞれ曝露，疾患を意味
する 2値の確率変数とする．すなわち，

• X = 1：曝露あり，X = 0：曝露なし
• Y = 1：疾患あり，Y = 0：疾患なし

である．X,Y を内生変数として含む構造的因果モデルM を考える．M において，X に関する方程
式 X = fX(pa(X), UX)を定数関数 X = 0に置き換えるという介入を行ったモデルをMX←0 とし，
同様に，X に関する方程式を X = 1に置き換えたモデルをMX←1 とする．モデルM における Y

は，モデルMX←0 においては YX=0，モデルMX←1 においては YX=1 と表記される．
例として，図 1のデータから分かる量を，これらのモデルを用いて表現してみよう*3．曝露を受けた
人は 600人，そのうち疾患を発症した人は 500人であるから，P (Y = 1 | X = 1) = 500/600 = 5/6

である．他方，曝露を受けなかった人は 600人，そのうち疾患を発症しなかった人は 400人である
から，P (Y = 1 | X = 0) = 400/600 = 4/6である．第 2.1小節で説明した関連付けの階層に属する
議論は，このような条件付き確率によって得られた値を比較するものであるといえる．
しかし，第 2.2小節で説明した通り，図 1のデータのみから曝露と疾患の因果関係を適切に論じる
ことはできない．交絡因子の影響を排除するためには，介入によって P (YX=1 = 1)と P (YX=0 = 1)

を比較する必要がある．
もちろん，現実には，構造的因果モデルの具体的な姿を知ることはできない．そのため，介入の定
義（定義 2）に基づいて YX=1 や YX=0 の分布を求めることはできない．実は，構造的因果モデルか
ら得られる因果ダイアグラムと各確率変数の同時分布が既知の場合，介入後の分布における確率変数
の分布を求められるということが分かっている．因果ダイアグラムは V と pa(Vi) (i = 1, . . . , p)

さえ仮定すれば構成できるから，構造的因果モデルよりも弱い仮定のもとで，介入に属する推論が
可能になるということである*4．具体的な推論の手法については本稿で触れることはできないため，
Pearlの著書などを参照していただきたい*5．
さて，冒頭の事例において，Aは「Aは曝露を受けなかったならば，疾患を発症しなかっただろう」
ということを立証しなければならなかった．この主張が成立する確率は P (YX=0 = 0)ではない．な
ぜならば，我々は Aが曝露を受け，かつ疾患を発症したという情報をすでに知っているからである．
すなわち，Aの主張が成立する確率は，以下の必要性の確率に対応する．

*2 正式には，黒木 [10]などを参照．
*3 本稿では，確率と割合を同一視している．実際には，データから未知の確率分布を推定するという作業を行うから，サ
ンプリングバイアスがないかどうか，十分なサンプルサイズが得られているかどうかなども気にしなければならない．

*4 実は，モデルに含まれる内生変数すべての分布を知る必要があるとは限らない．例えば，バックドア基準 [3] と呼ばれ
る基準を満たす変数の集合についての分布が分かっていれば，すべての確率変数の分布を知ることなく，介入に属する
推論を行うことが可能である．

*5 Pearlらによる入門書が [6]，Pearlによる本格的な文献が [5]で，いずれも邦訳が出版されている．日本人の研究者に
よる文献としては [10]などがある．



定義 3 (必要性の確率 [4]). 必要性の確率 (Probability of Necessity, PN)を以下のように定義する．

PN := P (YX=0 = 0 | X = 1, Y = 1)

PNは，反事実の階層に属する推論についての指標である．介入の階層に属する推論が母集団全体
に着目するものであったのに対し，反事実の階層に属する推論は，曝露を受け，かつ疾患を発症した
人という部分集団に着目するという違いがある．第 2 節の冒頭で述べた通り，反事実の階層に属す
る推論は，最も難しい階層に属する推論である．すなわち，P (YX=0 = 0) を求められたとしても，
PN = P (YX=0 = 0 | X = 1, Y = 1)が求められるとは限らない．このことを確認するために，少し
違った観点から PNを考察してみよう．

3.3 もう一つの見方
母集団全体が，表 1に示す 4つのタイプ (Doomed, Causative, Preventive, Immune)に分けられ
るとする [1]．すなわち，Doomedは曝露の有無にかかわらず疾患を発症するタイプ，Causativeは
曝露を受けたときのみ疾患を発症するタイプ，Preventive は曝露を受けなかったときのみ疾患を発
症しないタイプ，Immuneは曝露の有無にかかわらず疾患を発症しないタイプである．

タイプ もし曝露ありなら もし曝露なしなら
Doomed ⃝ ⃝
Causative ⃝ ×
Preventive × ⃝
Immune × ×

表 1 母集団の 4つのタイプ． ⃝は疾患を発症すること，×は疾患を発症しないことを表す．

各タイプに属する人々を，実際に曝露を受けたか否かによってさらに 2つに分ける．すると，母集
団は表 2に示す 8つのグループに分けられる．

タイプ 実際に曝露を受けた 実際には曝露を受けなかった
Doomed d d′

Causative c c′

Preventive p p′

Immune i i′

表 2 各文字は母集団全体に占める割合を表す．

例えば，冒頭の事例における A は曝露を受け，かつ疾患を発症しているから，Doomed または
Causativeであることが分かる．すなわち，Aは自らが Causativeであるという立証を求められてい
ることになる．
この設定に整合するように，構造的因果モデルを構成してみよう．V = {X,Y, Z},U = {UX , UZ}



とする*6．X,Y は先程と同様の 2値の確率変数であり，Z は各タイプを表す 4値の確率変数である．
まず，外生変数の分布を定める．
まず，UX は連続一様分布 U(0, 1)に従う．次に，UZ ∈ {D,C,P, I}であり，以下の分布に従う．

P (UZ = D) = d+ d′, P (UZ = C) = c+ c′, P (UZ = P) = p+ p′, P (UZ = I) = i+ i′

次に，内生変数について定める．まず，

Z = UZ

である．例えば，Z = D となる確率は d + d′ であり，これは母集団から無作為に選んだ個人が
Doomedである確率を意味している．次に，X は UX と Z によって以下のように決定される．

X = 1, iff (Z ∈ {D} ∧ UX ∈ [0, d/(d+ d′)]) ∨ (Z ∈ {C} ∧ UX ∈ [0, c/(c+ c′)])

∨(Z ∈ {P} ∧ UX ∈ [0, p/(p+ p′)]) ∨ (Z ∈ {I} ∧ UX ∈ [0, i/(i+ i′)])
(1)

ただし，∧は論理積，∨は論理和を表す．
これは，ある個人が曝露を受ける確率が，その個人のタイプによって異なることを意味してい
る．例えば，Doomedタイプの個人（Z ∈ {D}）が曝露を受ける確率は d/(d+ d′)である．これは，
Doomedタイプ全体に占める，曝露を受けた個人の割合が d/(d+ d′)であることを意味している*7．
最後に，Y は X と Z によって以下のように決定される．

Y = 1, iff (X ∈ {1} ∧ Z ∈ {D, C}) ∨ (X ∈ {0} ∧ Z ∈ {D, P})

これは，各タイプの定義に対応している．例えば，曝露を受けた (X ∈ {1})個人が疾患を発症する
(Y = 1)のは，その人のタイプが Doomedまたは Causativeである場合（Z ∈ {D,C}）に限られる．
以上のような構造的因果モデルを考えると，各確率は以下のように表される．

P (X = 1, Y = 1) = d+ c (2a)

P (X = 1, Y = 0) = p+ i (2b)

P (X = 0, Y = 1) = d′ + p′ (2c)

P (X = 0, Y = 0) = c′ + i′ (2d)

例えば，P (X = 1, Y = 1)は曝露を受け，かつ疾患を発症した人の割合に対応し，これは曝露群に
おける Doomedタイプと Causativeタイプに属する人々の割合の和 (d+ c)である．
続いて，介入について考える．元のモデルにおける X に関する方程式 (1)を X = 1や X = 0に
置き換えたモデルを考えることで，以下の新たな確率変数が得られる．

YX=1 = 1, iff (Z ∈ {D, C})
YX=0 = 1, iff (Z ∈ {D, P})

これらの確率変数の分布は以下のように求められる．

P (YX=1 = 1) = d+ c+ d′ + c′ (3a)

P (YX=0 = 1) = d+ p+ d′ + p′ (3b)

*6 このモデルにおいて Y は内生変数 X,Z のみによって決定されるので，UY をモデルに含める必要はない．
*7 UX は，曝露を受けるか否かを左右する個人的な事情の一切を表した補助的な変数である．



例えば，1つ目の式は，仮に曝露を受けたならば疾患を発症したであろう人々の割合が，母集団全
体に含まれる Doomedと Causativeの割合の和であることを意味している．
以上の議論に基づけば，PN = P (YX=0 = 0 | X = 1, Y = 1)を条件付き確率の定義に従って以下
のように書き換えることができる．

PN =
c

d+ c

曝露を受け，かつ疾患を発症した人の割合は d+ cであるから，上の式は，この部分集団に占める
Causativeの割合こそが PNであることを意味している．
関連付けの階層に属する推論は，(2a)から (2d)までの 4つの式によって与えられる確率を比較す
るものであった．介入の階層に属する推論は，確率分布に加えて因果ダイアグラムを仮定することで
求められる (3a)と (3b)の確率を比較するものであった．しかし，未知数 8つに対して得られる式は
全部で 6つであるから，連立方程式を解いて cを一意に定めることも，PNを求めることもできない．
すなわち，反事実の階層に属する推論を行うためには，さらなる仮定が必要である．そのための仮
定の一つが，以下に紹介する単調性である．

定義 4 (単調性 [4]). 以下が成り立つとき，Y は X に対して単調であるという．

P (YX=1 = 0, YX=0 = 1) = 0

これは，「曝露を受ければ疾患を発症せず，曝露を受けなければ疾患を発症する」という可能性が
ないことを意味している．冒頭の事例に即して説明すると，汚染地域に住むことによって疾患の発症
が予防されることはないという意味であるから，比較的現実的な仮定といえよう．ただし，このよう
な仮定をおいて良いかどうかは，事案に応じて具体的に検討されねばならない．
単調性の仮定は，p = p′ = 0 と言い換えられる．8 つの未知数のうち 2 つの値を仮定したことに
よって，先程の 6つの連立方程式から残りの 6つの未知数を一意に定めることができるようになる．
これによって，PNを求めることもできる．

4 法実務における因果関係の判断枠組み
前節までに導入した数理モデルを用いて，法実務における因果関係の判断枠組みを分析する．実務
においては，相対危険 (Relative Risk, RR) や寄与危険割合 (Percent Attributable Risk, PAR) と
いった指標が因果関係の判断基準となっているといわれている [9]．

RR :=
P (Y = 1 | X = 1)

P (Y = 1 | X = 0)
=

(d+ c)/(d+ c+ p+ i)

(d′ + p′)/(d′ + p′ + c′ + i′)

PAR := 1− 1

RR

RRが 1より大きい場合，PARは 0から 1の間の値をとるため，PARは因果関係の成立する確率
であると解釈されている．これまでの議論を踏まえれば，これが関連付けの階層に属する推論であ
り，これだけでは因果関係を適切に論じることはできないということが明らかであろう．交絡因子に
言及している文献もある [9]が，交絡因子を排除することによって可能なのは介入の階層に属する推



論である．上述の通り，冒頭の事例における因果関係の成立する確率は PNであると考えるべきであ
る．すなわち，法実務は反事実の階層に属する推論を求められているにもかかわらず，実態は関連付
けや介入の階層に留まっていると評価できる．
法実務は，暗黙のうちに，PARを PNと同一視してきたといえよう．PARが PNと一致するため
の条件は複数考えられるが，例えば，以下のような条件が考えられる．

定理 1 (PARと PNが一致する十分条件). 以下の 2つの条件が成り立つとき，PAR = PNとなる．

•
d

d+ c+ p+ i
=

d′

d′ + p′ + c′ + i′
（曝露群と非曝露群に占める Doomedの割合が等しい）

• p′ = 0 （非曝露群に Preventiveが存在しない）

一つ目の条件は交絡がないという仮定を，二つ目の条件は単調性の仮定をそれぞれ弱めたものであ
る．当然，これらの条件は数学的に保証されるものではないから，仮に PARによって因果関係を論
じるためには，これらの条件が成立しているかどうかを別個に検討せねばならない．

5 提案
では，定理 1の条件が成り立たない場合，Aはどのようにして因果関係を立証すればよいのだろう
か．本稿では，2つの提案を行う．

5.1 提案 1: 不等式の利用
定理 2 (PNの上限と下限 [8]). PNは以下の不等式を満たす．

max

{
0,

c− p

d+ c

}
≤ PN ≤ min

{
1,

c+ i

d+ c

}
介入の階層に属する推論が可能なのであれば，以下の 2つの式の右辺に現れる各項の値が求められ
るから，これを用いることで，PNの上限と下限を求めることができる．

c− p = (d+ c) + (d′ + p′)− (d+ d′ + p+ p′)

c+ i = (c+ c′ + i+ i′)− (c′ + i′)

例えば，1のデータに加えて，P (YX=0 = 1) = d + d′ + p + p′ = 7/15であると分かったとしよ
う．このとき，P (YX=0 = 0) = c+ c′ + i+ i′ = 8/15であるから，0.68 ≤ PN ≤ 0.88が成り立つ．
すなわち，PNの具体的な値を特定することはできないが，PNが 0.68以上であることは示せる（単
調性を仮定すれば，PN=0.68であると分かる）．

5.2 提案 2: 追加的なデータの利用
この提案は，[2]から着想を得たものである．PNは，曝露を受け，かつ疾患を発症した部分集団の
性質についての指標である．あくまで Aは自らについての確率を推定すればよいのであるから，例
えば，自分に喫煙の習慣はないとか，基礎疾患がないなどといった個別の情報を追加することで，自
己の疾患が曝露に起因することの確からしさを高めることができる．このような判断過程は実務上採



用されているが，これを確率的に表現してみよう．例えば，非喫煙者に限定したデータとして表 3の
データが得られたと仮定する*8．

(非喫煙者) 疾患あり 疾患なし
曝露あり 360 240

曝露なし 60 120

表 3 非喫煙者に限定したデータの例

さらに，非喫煙者に限定して介入を行い，P (YX=0 = 1 | 非喫煙者) = 13/24であると分かったと
しよう．このとき，0.8 ≤ PN ≤ 1.0が成り立つ．
非喫煙者に限定したデータにおいても PAR=0.2 であるが，PN の下限は 0.8 に引き上げられた．
すなわち，追加的なデータを用いることで，自己の疾患が曝露に起因する確からしさを高めることが
できる場合がある*9．このように，情報を追加することによって確率を更新するというプロセスは，
太田 [11]の理論とも整合的である．
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